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Scaling in a nonconservative earthquake model of self-organized criticality
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We numerically investigate the Olami-Feder-Christensen model for earthquakes in order to characterize its
scaling behavior. We show that ordinary finite size scaling in the model is violated due to global, system wide
events. Nevertheless we find that subsystems of linear dimension small compared to the overall system size
obey finite ~subsystem! size scaling, with universal critical coefficients, for the earthquake events localized
within the subsystem. We provide evidence, moreover, that large earthquakes responsible for breaking finite-
size scaling are initiated predominantly near the boundary.
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I. INTRODUCTION

Many dynamical phenomena in nature are intermitte
This ‘‘bursty’’ dynamics may be related to an underlyin
complex state, often characterized by long range correlat
in space and time. For example, the crust of the earth a
nates long periods of relative quiescence with burst of ac
ity ~earthquakes!, which have a wide range of possible size
The behavior of earthquakes is described by the empir
Gutenberg-Richter~GR! law @1#, where the distribution of
energy dissipated in earthquake events is a power law
many orders of magnitude in energy. The GR scaling
tends from the smallest measurable earthquakes, which
equivalent to a truck passing by, to the most disastrous
have been recorded. Similar scale-free behavior of burs
observed in vastly different kinds of physical systems su
as flux motion through disordered type-II superconduct
placed in a magnetic field@2#, or in granular piles, unde
some conditions@3#, etc.

Self-organized criticality~SOC! @4# has been proposed a
a general dynamical principal behind the observed comp
behavior of many natural phenomena. It refers to the fun
mental property of slowly driven, extended systems to or
nize, over a sufficiently long transient period, into a dynam
cal critical state that lacks any characteristic time or len
scale. The amplitude of the response of the system to
external perturbation follows a power-law distribution.
number of simple models have been developed to test
applicability of SOC to a variety of complex interacting d
namical systems, such as sand piles and earthquakes~for a
review, see e.g., Ref.@5–7#!.

One of the basic theoretical problems is to identify robu
and thus physically relevant mechanisms for SOC to eme
and to define a space of parameters and dynamical proce
where SOC is a stable feature. Although it has been propo
that the presence of conservation laws~e.g., sand grains be
ing transported in a sand pile! or special symmetries wa
necessary for SOC@8,9#, many known examples of physica
phenomena and some models have been found wher
apparent conservation law or special symmetry exists. Th
include, besides earthquakes, biological evolution, for
fires, epidemics,~possibly! solar flares,~possibly! reconnec-
tion events in the magnetotail, etc.@5–7#. In contrast to con-
servative systems, the mechanisms for SOC in nonconse
1063-651X/2001/64~4!/046111~5!/$20.00 64 0461
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tive systems are not very well established.
A nonconservative SOC model that in recent years

attracted much attention is the so called Olami-Fed
Christensen~OFC! model@10#. The OFC model is a simpli-
fied lattice representation of a spring-block model for ear
quake dynamics that was originally introduced by Burrid
and Knopoff@11#. The Burridge-Knopoff model can be sche
matized as a two-dimensional network of blocks interco
nected by springs. All blocks are subject to an external d
ing force, which pulls them, and to a static friction, whic
opposes their motion. In the OFC model, each site of a lat
is associated with a continuous variable, which represent
force acting on a block. A slow driving is applied to th
system by increasing uniformly and simultaneously t
forces of all the elements. When the force on a site exce
some threshold value~the maximal static friction!, the site
relaxes and distributes part of its force to nearest neigh
sites. Each such discharge event is accompanied by a
loss in accumulated force from the system. This conceptu
simple and seemingly numerically tractable model rep
duces some of the qualitative phenomenology of the sta
tics of earthquake events such as power-law behavior ov
range of sizes, and intermittency or clustering of large eve
@12#. Extensions of the model have been recently develo
that reproduce to some extent Omori’s law and other tem
ral patterns associated with earthquakes@13#.

In the context of nonconservative models, the OFC mo
is of particular interest as it is possible to directly control t
level of conservation of the dynamics through a parametea.
Early analysis on relatively small systems indicated that
OFC model exhibited SOC, in the sense that earthquake
the steady state obeyed finite-size scaling~FSS! when the
system size was varied@10#. However, the critical coeffi-
cients obtained using the FSS ansatz were found to be
universal. In particular the exponents characterizing
power-law distributions appeared to vary with both the d
sipation parameter,a, and the form of the boundary cond
tions. This would have been in sharp contrast to the us
fixed point picture of critical phenomena where most mic
scopic details are irrelevant. Moreover some apparent crit
exponents obtained using FSS violated physical bounds@14#,
putting some doubt on the existence of criticality in t
model. Recently it was shown using a multiscaling analy
of large-scale simulations that, actually, the avalanche
©2001 The American Physical Society11-1
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distribution has a universal power-law behavior, independ
of the dissipation parameter and for different boundary c
ditions, but that the cutoff in the power-law distribution do
not behave according to FSS@15#. In larger systems, propor
tionally more of the force can be dissipated in the larg
events that occur, and the cutoff function becomes sha
and sharper as the system size increases.

Departures from standard FSS have been reported
various SOC models as, for example, the sandpile mo
@16#, the Drossel-Schwabl~DS! forest fire model@17,18#,
and the Zhang model@19#. In this paper we address the que
tion of the origin of the breaking of FSS and its relation
the mechanism responsible for SOC in the OFC model
particular we test the implicit assumption behind the F
hypothesis that a finite systems behaves as a subsystem
larger system. The paper is organized as follows. In the S
II we describe in some detail the model. In Sec. III w
present the results of our numerical study relative to t
different types of probability distributions for earthqua
sizes. The first distribution concerns earthquakes that are
calized within a given subsystem. We show that this sub
of earthquakes exhibits ordinary FSS as long as the lin
extent,l, of the subsystem is sufficiently small compared
the linear extent,L, of the entire system. The second dist
bution groups earthquakes according to the position of t
starting site relative to the boundaries of the system. Fr
this investigation, we deduce that FSS is violated due
large events initiated in a region near the boundary. Fina
in Sec. IV we discuss our results and draw some conclusi

II. THE MODEL

We consider a two-dimensional square lattice ofL3L
sites. To each sitei of the lattice we associate a continuo
variableFi , which initially takes some random values b
tween zero and a threshold valueFth . The dynamics pro-
ceeds then indefinitely. In the limit of infinite time sca
separation between the slow driving and the~almost! instan-
taneous earthquake process, the dynamics is:

1. Uniform drive: all forcesFi are increased at the sam
rate, until one of them reaches the valueFth .

2. Earthquake: when a site becomes unstable~i.e., Fi
>Fth!, the uniform driving is stopped and the syste
evolves according to the following local relaxation rule

Fi>Fth⇒H Fi→0

Fnn→Fnn1aFi ,
~1!

until there are no more unstable sites. In Eq.~1!, the sub-
script ‘‘nn’’ stands for the four nearest neighbors to sitei.

Since only a fraction, 4a, of the force is redistributed in
each relaxation event~toppling!, the model is nonconserva
tive for a,1/4. In the following we concentrate on this cas
i.e., 0,a,1/4.

To completely define the model we need to specify
boundary conditions. Boundaries are believed to play a c
cial role for the observation of critical behavior in the OF
model. It has been suggested that they act as inhomog
ities that frustrate the natural tendency of the model to or
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into a periodic state@20,21#. Indeed, for sufficiently small
values of the conservation parametera (a,ac.0.18), a
system with periodic boundary conditions quickly reaches
exactly periodic state with only earthquakes of size one.
larger values ofa the situation is slightly more complicate
with multiple topplings involved in a single avalanche, b
the avalanches are still localized and criticality is not o
served@20#. A system with open boundaries is prevent
from reaching a periodic state because boundary sites h
fewer neighbors and therefore cycle at a different freque
from bulk sites. Middleton and Tang suggested that the
homogeneity created by the boundaries propagates into
bulk of the system, developing, in this way, long range s
tial correlations. They named this mechanism ‘‘margin
synchronization’’ or phase locking@22#. In accordance with
previous studies, therefore, we consider open boundary
ditions. If a boundary~corner! site topples, an extra amoun
aFi (2aFi) is simply lost by the system.

III. RESULTS: PROBABILITY DISTRIBUTIONS

After a sufficiently long transient time, the system reach
a stationary state. Several statistical properties can be us
characterize this state. Most previous studies of the O
model have focused on the behavior of the probability d
tribution of earthquake sizes,PL(s), whereL is the size of
the system ands is the total number of topplings even
during an earthquake@10,15,20–25#. We choose instead to
analyze the behavior of different distributions for avalanch
sizes, which distinguish between earthquakes accordin
the region of the lattice involved~e.g., bulk or boundary! and
the coordinates of the triggering site~see Fig. 1!. This inves-
tigation is particularly relevant for the OFC model in view
the strong inhomogeneity in the spatial distribution of av
lanches@20,22,25#. According to Ref.@20#, for example,
large avalanches are localized near the boundary~at least for
a,ac). As a minor technical remark, we point out that w

FIG. 1. Schematic representation of different types of a
lanches. The continuous line represents the lattice of sizeL, the
dashed line the subsystem of linear extentl. Triggering sites are
denoted with a full circle, toppling sites with a cross. Avalanche~a!
contributes to the distributionPcon f(l,L,s); ~a! and ~b! to
P,(l,L,s); ~c! to P.(l,L,s).
1-2
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SCALING IN A NONCONSERVATIVE EARTHQUAKE . . . PHYSICAL REVIEW E 64 046111
exclude from our data avalanches that involve only one
(s51) as they appear to behave according to their own
tistics @20#. As we are mainly interested in asymptotical
large earthquakes, this does not alter our conclusions.

We consider a subsystem of linear extentl centred in a
system of sizeL. The first distribution we introduce
Pcon f(l,L,s), is the normalized distribution of earthquak
sizes restricted to earthquakes that are confined ent
within the subsystem@e.g., avalanche~a! in Fig. 1#. The
model is driven according to its usual dynamics but o
those particular earthquakes are counted. According to
definition, the casel5L corresponds to the distribution o
avalanches that do not reach the boundary of the system
shown in Fig. 2, the distributionPcon f(l,L,s) becomes in-
dependent ofL, if L is considerably larger thanl ~approxi-
matelyL>2l). WhenL approachesl, this is no longer the
case and the cutoff in the distribution is pushed to lar
sizes. Although we have shown in Fig. 2 only the distrib
tions for a50.18 andl532,64, analogous consideration
apply to different values ofa and for different sizes,l.
Since for a genericL, Pcon f(l,L,s)ÞPcon f(l,l,s), a small
portion of a large system is substantially different from
finite system of the same size, contrary to what happen
equilibrium critical phenomena. A similar observation w
made in Ref.@17# for the DS forest fire model. In the follow
ing, we denote with Pcon f(l,s) the distribution
Pcon f(l,L,s) in the limit where the distribution does no
appear to depend onL. In order to determine numericall
these distributions, for each value ofl we have simulated
~for at least 23109 earthquakes! a system of sizeL52l.
The dependence onL of Pcon f can in this case be safel
neglected. With this choice, the accuracy of the measu
and the range of scales investigated are optimized, within
computational limits.

In Fig. 3 we report a FSS collapse ofPcon f(l,s) for dif-
ferent values ofa. Contrary to the entire distribution o
earthquake sizes,PL(s), we observe thatPcon f(l,s) satisfies
the FSS hypothesis, i.e.,Pcon f(l,s).l2b f (s/lD), with uni-

FIG. 2. Probability distributionPcon f(l,L,s) for a50.18 and
~a! l532 and~b! l564.
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versal critical coefficients. The curve corresponding toa
50.15 andl5256 shows some noisy behavior, due to t
difficulties in collecting good statistics in this case. Inde
by decreasinga, the relative fraction of earthquakes in th
bulk of the system~with sizes.1) diminishes. Nonetheless
there is no evident sign that FSS is violated in this case.
critical exponents used in the fit of Fig. 3 areb53.6 and
D52, independent of the dissipation parametera. The value
of the histogram exponentt5b/D.1.8 we obtain is the
same as that found forPL(s) @15#. In addition, the value ofD
we find corresponds to the largest possible value for the
tire distribution (Dmax in Ref. @15#!, as it can be shown tha
nonconservation requiresD<2 @14#.

The scaling behavior ofPcon f appear to be reasonabl
robust with respect to translating the subsystem within
entire system; in Fig. 4 we report a FSS plot for the su
system placed on a boundary and on a corner of the sys
for a50.18. While the FSS collapse for the subsyste
placed on the boundary is rather good, some deviations f
FSS are observed in the cutoff region for the case of
subsystem placed in the corner. We believe this behavior
be ascribed to the enhanced boundary effects in the la
case~two sides of the subsystem are boundary sides ins
of only one! and would disappear if larger~sub!systems
could be studied. This picture is confirmed by choosing d
ferenta values: for the subsystem in the corner, deviatio
from FSS are more pronounced fora50.21 and are absen
for a50.15. For the subsystem on the boundary, instead,
quality of FSS collapse is rather convincing in all cases.

We introduce next the distributionsP,(l,L,s) and
P.(l,L,s). These are the normalized distribution of eart
quakes that start respectively within (P,) and outside (P.)
the subsystem of sizel, irrespective of whether they stay i
or go out of the subsystem~see Fig. 1!. The only difference
between these two distributions,P, andP. , is the location

FIG. 3. Finite-size scaling plots ofPcon f(l,s) ~with the sub-
system placed at the center! for ~a! a50.15, ~b! a50.18, and~c!
a50.21. The critical exponents areb53.6 andD52; the slope of
the straight line ist51.8. For visual clarity, curves~a! and~c! have
been shifted along thex axis,x→x21 andx→x11, respectively.
1-3
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of the site that triggers the avalanche. We observe num
cally that the distributionsP,(l,L,s) and P.(l,L,s) be-
come independent ofl respectively in the limitl!L and
l.L. As an example we report in Fig. 5 the behavior
P,(l,L,s) and P.(l,L,s) for a50.18, L5256, and for
variousl. For simplicity, in the following we denote with
P,(L,s) and P.(L,s) the distributions in the limit where
they do not depend onl.

We consider, therefore, two centred subsystems of lin
extentl2.l1, such that the above conditions are satisfi
More specifically, we choosel15 3

16 L and l25 7
8 L. In this

caseP. corresponds to the subset of earthquakes that
initiated in some ‘‘boundary’’ region andP, corresponds to
the subset of earthquakes that are initiated within so

FIG. 4. Finite-size scaling plots ofPcon f for the subsystem
placed ~a! on a corner and~b! on a boundary of the system (a
50.18). The critical exponents areb53.6 andD52; the slope of
the straight line ist51.8. Curve~a! has been shifted,x→x21.

FIG. 5. Probability distributions~a! P,(l,L,s) and ~b!
P.(l,L,s) for a50.18, forL5256 and for variousl.
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‘‘bulk’’ region. In Fig. 6 we report a FSS scaling plot bot
for P. andP, . In this figure we chooseD52 as the maxi-
mum allowed value. It is clear that the boundary distributi
P. cannot be collapsed according to the FSS ansatz. In
it develops a sharper and sharper cutoff that changes s
and that has an excess of large events~the cutoff moves
towards right for increasingL). The bulk distributionP,

instead does not develop a noticeably sharper cutoff and d
not appear to change its shape. It may possibly be collap
according to the FSS ansatz. Consistent with the results
Pcon f and for PL , the power-law exponent forP, is t
5b1 /D.1.8.

The above numerical analysis indicates that the la
events that violate FSS are triggered by sites in a bound
region. Indeed the behavior of the cutoff for the collaps
probability distributionsP. andPL is very similar~see Fig.
1 in Ref. @15#!. Although large earthquakes are focuss
mainly toward the boundary, as suggested in Ref.@20#, they
occur also in the bulk of the system, even for low values
a, as can be deduced from Fig. 3 and Fig. 6. Moreover,
do not observe any significant qualitative change in the
havior of the system arounda5ac.0.18, as claimed in Ref
@20#.

IV. DISCUSSION AND CONCLUSIONS

Similarly to other SOC systems@16–19#, the nonconser-
vative OFC model shows relevant deviations from sim
FSS @15#. In this paper we have investigated the origin
this phenomenon, finding that FSS in the OFC model is v
lated because of large, system wide earthquakes. In fact
have found that earthquakes localized within a given s
system do obey ordinary FSS, with universal critical exp
nents, independently of whether the subsystem is place
the center or on a boundary of the system. The value of

FIG. 6. Finite-size scaling plots of~a! P,(L,s) and ~b!
P.(L,s). Different sets of curves corresponds, from left to right,
a50.15 ~shifted byx→x21), a50.18, anda50.21 ~shifted by
x→x11). The exponents areb153.6, b253.9, andD52.
1-4
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power-law exponent,t.1.8, for the ‘‘confined’’ distribution
agrees with the one for the entire distribution. We ha
shown, moreover, that the probability distribution for ear
quakes initiated in a boundary region do not obey FSS,
cause of an ‘‘excess’’ of large events. This would result in
apparent exponentD.2 that is not allowed in the noncon
servative case. On the other hand, the probability distribu
for earthquakes starting in the bulk of the system is comp
ible with a FSS hypothesis. In particular, the critical exp
nent isD52 in this case, indicating that large earthquak
responsible for breaking finite size scaling are initiated p
dominantly near the boundary of the system.

Self-organized criticality in the OFC model has been
cribed to a mechanism of ‘‘marginal synchronization’’@22#.
A system with open boundaries becomes almost sync
nized by an invasion process where spatial correlations
ed

et
A

tt
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velop from the boundaries. It was suggested that sites c
to the boundaries start to organize themselves first, build
up long range correlations. The critical region grows w
time, until, in the stationary state, it invades the whole l
tice. Our findings on the large events occurring at the bou
ary seem to indicate that the effect of synchronization
stronger for boundary sites than for bulk sites. This view
supported also by the ‘‘on screen’’ observation that lar
earthquakes tend to be triggered repetitively by the sa
sites over a long time scale~a result that seems to be con
firmed also by the study in Ref.@25#!.
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